1. R. A. Fisher, "The general sampling distribution of the multiple correlation," Proc. Roy. Soc., A., 1928, p. 654-673. See p. 665.
$\mathbf{8 1 [K] . - G . ~ J . ~ L i e b e r m a n , ~ " T a b l e s ~ f o r ~ o n e - s i d e d ~ s t a t i s t i c a l ~ t o l e r a n c e ~ l i m i t s , " ~}$ Industrial Quality Control, v. 14, No. 10, 1958, p. 7-9.
Given a sample of n from $N\left(\mu, \sigma^{2}\right)$, it is desired to determine from the sample a quantity a (or b) such that with probability γ, the interval ($-\infty, a$) (or the interval (b, ∞)) will include at least the fraction $1-\alpha$ of the population. The tables give values of K to 3 D for $n=3(1) 25(5) 50, \gamma=.75, .9, .95, .99$, and $\alpha=$ $.25, .1, .05, .01, .001$, such that $a=\bar{X}-K s$ and $b=\bar{X}-K s$, where X is the sample mean and S^{2} is the usual unbiased estimate of σ^{2}. For more extensive tables and a more complete discussion see [1].

C. C. Craig

University of Michigan
Ann Arbor, Michigan

1. D. B. Owen, Tables of Factors for One-sided Tolerance Limits for a Normal Distribution, Office of Technical Services, Dept. of Commerce, Washington, D. C., 1958. [See RMT 82.]

82[K].-D. B. Owen, Tables of Factors for One-sided Tolerance Limits for a Normal Distribution, Sandia Corporation, SCR-13, 1958, 131 p., 28 cm . Obtainable from the Office of Technical Services, Dept. of Commerce, Washington 25, D. C. Price $\$ 2.75$.

Given a sample of n from $N\left(\mu, \sigma^{2}\right)$, with \bar{x} the sample mean and S^{2} the usual unbiased estimate of σ^{2}, these tables give values of k for which

$$
\operatorname{Pr}[\operatorname{Pr}(x \leqq \bar{x}+k s) \geqq P]=\gamma
$$

As stated, Table I is a reproduction of one given by Johnson \& Welch [1] in which values of k are given to 3 D for $\gamma=.95, n=5(1) 10,17,37,145, \infty$ and $P=0.7(.05) .85, .875, .9, .935, .95, .96, .975, .99, .995, .996, .9975, .999, .9995$. It is also explained that Table II was obtained from Resnikoff \& Lieberman's table of percentage points of the noncentral t-distribution [2] appropriately modified to give k values to 3 D for $n=3(1) 25(5) 50, \infty$ and $P=.75, .85, .9, .935$, $.96, .975, .99, .996, .9975, .999$ for $\gamma=.75, .9, .95$. For $\gamma=.99, .995$, $n=6(1) 25(5) 50, \infty$, while P has the same range as before. The more extensive Table III gives values to 5 D obtained by an approximative method due to Wallis [3] for $n=2(1) 200(5) 400(25) 1000, \infty, P=.7, .8, .9, .95, .99, .999$, and $\gamma=$ $.7, .8, .9, .95, .99, .999$. For small n and the larger values of P and γ, the approximation breaks down and the entry is left blank or given with a warning sign that comparison should be made with neighboring values. (However it looks to the reviewer as if this sign has been omitted from the entries for $n=2, P=.99, .999$, and $\gamma=$.999.) Finally Table IV is obtained from Bowker's table of two-sided tolerance limits [3] by an approximate procedure suggested by McClung [4] to give conservative values of k for one-sided limits. Here values are given to 3D for $n=2(1) 102(2) 180(5) 300(10) 400(25) 750(50) 1000, \infty, P=.875, .95, .975, .995$, .9995 , and $\gamma=.75, .9, .99$.

In an appendix auxiliary tables compare values in the four tables for selected values of the four parameters. The maximum difference shown between Tables I and II is .01 . It is concluded that values in Table III will probably be underesti-

